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SUMMARY

JAVASCRIPT is a scripting language that plays a prominent role in web applications today. It is dynamic,
loosely typed and asynchronous and is extensively used to interact with the Document Object Model (DOM)
at runtime. All these characteristics make JAVASCRIPT code error-prone; unfortunately, JAVASCRIPT fault
localization remains a tedious and mainly manual task. Despite these challenges, the problem has received
very limited research attention. This paper proposes an automated technique to localize JAVASCRIPT faults
based on dynamic analysis, tracing and backward slicing of JAVASCRIPT code. This technique is capa-
ble of handling features of JAVASCRIPT code that have traditionally been difficult to analyse, including
eval, anonymous functions and minified code. The approach is implemented in an open source tool called
AUTOFLOX, and evaluation results indicate that it is capable of (1) automatically localizing DOM-related
JAVASCRIPT faults with high accuracy (over 96%) and no false-positives and (2) isolating JAVASCRIPT
faults in production websites and actual bugs from real-world web applications. Copyright © 2015 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Client-side JAVASCRIPT is increasingly used in web applications to increase their interactivity
and responsiveness. JAVASCRIPT-based applications suffer from multiple dependability problems
because of their distributed, dynamic nature, as well as the loosely typed semantics of JAVASCRIPT.
A common way of gaining confidence in software dependability is through testing. Although test-
ing of modern web applications has received increasing attention in the recent past [1–4], there has
been little work on what happens after a test reveals an error. Debugging of web applications is
still an expensive and mostly manual task. Of all debugging activities, locating the faults or fault
localization is known to be the most expensive [5, 6].

The fault-localization process usually begins when the developers observe a failure in a web
program spotted either manually or through automated testing techniques. The developers then try
to understand the root cause of the failure by looking at the JAVASCRIPT code, examining the
Document Object Model (DOM)‡ tree, modifying the code (e.g. with alerts or tracing statements),
running the application again and manually going through the initial series of navigational actions
that led to the faulty state or running the corresponding test case.

Manually isolating a JAVASCRIPT fault’s root cause requires considerable time and effort on
the part of the developer. This is partly due to the fact that the language is not type-safe and
has loose fault-detection semantics. Thus, a fault may propagate undetected in the application for
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a long time before finally triggering an exception. Additionally, faults may arise in third-party
code (e.g. libraries, widgets and advertisements) [7] and may be outside the expertise of the web
application’s developer.

Further, faults may arise because of subtle asynchronous and dynamic interactions at runtime
between the JAVASCRIPT code and the DOM tree, which make it challenging to understand their
root causes. Indeed, from the authors’ recent large-scale study of over 300 JAVASCRIPT bug reports,
faulty interactions between the JAVASCRIPT code and the DOM—which are called DOM-related
faults—comprise over 65% of all JAVASCRIPT bugs [8]. From the same study, it was also found
that these DOM-related faults take longer to fix, on average, compared with all other fault types;
hence, these DOM–JAVASCRIPT interactions are of particularly great concern when localizing
faults. For these reasons, this paper focuses on the localization of DOM-related faults.

Although fault localization in general has been an active research topic [6, 9–11], automatically
localizing web faults has received very limited attention from the research community. To the best
of the authors’ knowledge, automated fault localization for JAVASCRIPT-based web applications
has not been addressed in the literature yet.

To alleviate the difficulties with manual web fault localization, this paper proposes an automated
technique based on dynamic backward slicing of the web application to localize DOM-related
JAVASCRIPT faults. The proposed fault localization approach is implemented in a tool called
AUTOFLOX. In addition, AUTOFLOX has been empirically evaluated on six open-source web appli-
cations and three production web applications, along with seven web applications containing real
bugs. The main contributions of this paper include the following:

� A discussion of the challenges surrounding JAVASCRIPT fault-localization, highlighting the
real-world relevance of the problem and identifying DOM-related JAVASCRIPT faults as an
important subclass of problems in this space;
� A fully automated technique for localizing DOM-related JAVASCRIPT faults, based on dynamic

analysis and backward slicing of JAVASCRIPT code. Unlike the previous version of the tech-
nique described in the authors’ ICST’12 paper [12] on which this work is based, the current
technique can localize faults in the presence of the eval function, anonymous functions
and minified JAVASCRIPT code. In addition, the current technique is capable of localizing
multiple faults;
� An open-source tool, called AUTOFLOX, implementing the fault localization technique. AUT-

OFLOX has been implemented both as a stand-alone program that runs with the CRAWLJAX

tool, as well as an Eclipse plugin;
� An empirical study to validate the proposed technique, demonstrating its efficacy and real-

world relevance. The results of this study show that the proposed approach is capable of
successfully localizing DOM-related faults with a high degree of accuracy (over 96%) and no
false positives. In addition, AUTOFLOX is able to localize JAVASCRIPT faults in production
websites, as well as 20 actual, reported bugs from seven real-world web applications.

2. CHALLENGES AND MOTIVATION

This section describes how JAVASCRIPT§ differs from other traditional programming languages and
discusses the challenges involved in localizing faults in JAVASCRIPT code. First, a JAVASCRIPT

code fragment that is used as a running example throughout the paper is presented.

2.1. Running example

Figure 1 presents an example JAVASCRIPT code fragment to illustrate some of the challenges
in JAVASCRIPT fault-localization. This code fragment is based on a fault in a real-world
web application.¶

§In this paper, the term JAVASCRIPT is used to mean client-side JAVASCRIPT.
¶https://www.tumblr.com.
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Figure 1. Example JAVASCRIPT code fragment based on tumblr.com.

The web application pertaining to the code fragment in Figure 1 consists of a banner at the
top of the page. The image shown on the banner cycles through four images periodically (every
5000 ms). The four images are each wrapped in div elements with DOM IDs banner_1 through
banner_4. The div element wrapping the image being shown is identified as ‘active’ via its
class attribute.

In the preceding code, the changeBanner function (Lines 1 to 10) updates the banner image to
the next one in the sequence by updating the DOM. Lines 12 and 13, which are outside the function,
are executed at load time. Line 12 sets the value of variable currentBannerID to 1, indicating
that the current image being shown is banner_1. Line 13 sets a timer that will asynchronously call
the changeBanner function after 5 s (i.e. 5000 ms). After each execution of the changeBanner
function, the timeout function is cleared and reset so that the image is changed again after 5 s.

The JAVASCRIPT code in Figure 1 will throw a null exception in Line 9 when executed.
Specifically, in the setTimeout calls, changeBanner is invoked without being passed a param-
eter, even though the function is expecting an argument, referenced by bannerID. Omitting the
argument will not lead to an interpretation-time exception; rather, the bannerID will be set to
undefined when changeBanner executes. As a result, the second getElementById call
will look for the ID ‘banner_undefined’ in the DOM; because this ID does not exist, a null
will be returned. Hence, accessing the addClassName method via bannerToChange in Line 9
will lead to a null exception.

Note that this error arises because of the loose typing and permissive error semantics of
JAVASCRIPT. Further, to understand the root cause of the error, one needs to analyse the execution
of both the JAVASCRIPT code and the DOM. However, once the fault has been identified, the fix is
relatively straightforward, viz. modify the setTimeout call in Line 13 to pass a valid value to the
changeBanner function.

2.2. JAVASCRIPT fault localization

Although JAVASCRIPT is syntactically similar to languages such as Java and C++, it differs from
them in two important ways, which makes fault localization challenging.

Asynchronous execution: JAVASCRIPT code is executed asynchronously and is triggered by the
occurrence of user-triggered events (e.g. click and mouse over), load events or events resulting from
asynchronous function calls. These events may occur in different orders; although JAVASCRIPT

follows a sequential execution model, it does not provide deterministic ordering. In Figure 1, the
execution of the lines outside the changeBanner function is triggered by the load event, while
the execution of the changeBanner itself is triggered asynchronously by a timeout event via the
setTimeout call. Thus, each of these events triggered the execution of two different sequences
of JAVASCRIPT code. In particular, the execution sequence corresponding to the load event is Line
12! Line 13, while the execution sequence corresponding to the asynchronous event is Line 2!
Line 3! Line 5! Line 6! Line 7! Line 8! Line 9.

In traditional programming languages, the goal of fault localization is to find the erroneous lines
of code. For JAVASCRIPT, its asynchronous characteristic presents an additional challenge. The
programmer will not only need to find the erroneous lines, but she will also have to map each
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executed sequence to the event that triggered their execution in order to understand the root cause
of the fault. In addition, event handlers may overlap, as a particular piece of JAVASCRIPT code may
be used by multiple event handlers. Thus, manual fault localization in client-side JAVASCRIPT is a
tedious process, especially when many events are triggered.

DOM interactions: In a web application, JAVASCRIPT code frequently interacts with the DOM,
which characterizes the dynamic HTML structure and elements present in the web page. As a result,
the origin of a JAVASCRIPT fault is not limited to the JAVASCRIPT code; the JAVASCRIPT fault may
also result from an error in the DOM. With regards to fault localization, the notion of an ‘erroneous
line’ of code may not apply to JAVASCRIPT because it is possible that the error is in the DOM
rather than the code. This is particularly true for DOM-related JAVASCRIPT faults (described in
further detail in Section 3), which are defined as JAVASCRIPT faults that lead to either exceptions or
incorrect DOM element outputs as a result of a DOM access or update. As a result, for such faults,
one needs to formulate the goal of fault localization to isolate the first line of JAVASCRIPT code
containing a call to a DOM access function (e.g. getAttribute(), getElementById()) or
a DOM update function/property (e.g. setAttribute() and innerHTML) that directly causes
JAVASCRIPT code to throw an exception or to update a DOM element incorrectly. This line is
referred to as the direct DOM interaction.

For the example in Figure 1, the JAVASCRIPT exception occurs in Line 9, when the
addClassName function is called on bannerToChange, which is null. The null value orig-
inated from Line 7, when the DOM access function getElementById returned null; thus,
the direct DOM interaction is actually at Line 7. Note that even though this direct DOM interac-
tion does not represent the actual ‘erroneous’ lines, which contain the missing parameter to the
changeBanner function (Lines 3 and 13), knowing that getElementById in Line 7 returned
null provides a hint that the value of either ‘prefix’ or ‘bannerID’ (or both) is incorrect.
Using this knowledge, the programmer can isolate the erroneous line of code as she has to track the
values of only these two variables. While in this simple example, the direct DOM interaction line is
relatively easy to find; in more complex code, the null value could propagate to many more loca-
tions, and the number of DOM interactions to consider could be much higher, making it challenging
to identify the direct DOM interaction. This is the challenge addressed in this paper.

2.3. Challenges in analysing JAVASCRIPT code

In addition to the challenges described in the previous subsection, JAVASCRIPT also contains several
features that complicate the process of analysing JAVASCRIPT code for fault localization. These are
described subsequently.

Eval: JAVASCRIPT allows programmers to dynamically create code through the use of the eval
method. This method takes a string value as a parameter, where the string evaluates into JAVASCRIPT

code. Although alternatives to certain uses of eval have been introduced in the language (e.g. the
JSON API), studies show that eval use remains pervasive among web developers [13].

The presence of eval poses a challenge to both manual and automatic analysis of JAVASCRIPT

code. The reason is twofold. First, the string parameter to eval is typically not just a simple string
literal, but rather, a concatenation of multiple string values whose value cannot be determined based
on a simple source-code level inspection; hence, it is difficult to infer the JAVASCRIPT code gener-
ated by eval at runtime. Second, the scope of variables introduced in eval code is directly linked
to the scope in which the eval call is made; hence, eval code cannot be analysed in isolation, but
must be analysed in relation to where the eval call is made. These, in turn, make fault localiza-
tion more difficult, because the developer cannot easily keep track of the values that are created or
modified through eval.

Anonymous functions: Because JAVASCRIPT treats functions as first-class citizens in the form
of Function literals, programmers can define functions without providing them with a name;
these unnamed functions are known as anonymous functions. Hence, when tracking the propagation
of a JAVASCRIPT fault, it does not suffice to identify the lines of code involved in the propagation
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solely based on the function name, particularly if a JAVASCRIPT fault originates from or propagates
through an anonymous function.

Minified code: Before deploying a web application, it is common practice for web developers
to minify their JAVASCRIPT code, which compresses the code into one line. While this minification
process reduces the size of JAVASCRIPT files, it also makes JAVASCRIPT code more difficult to read
and analyse. This makes it very difficult to localize faults in minified code, as the developer will
have a hard time keeping track of the relevant lines of code.

3. SCOPE OF THE PAPER

In prior work by the authors [7], it was found that deployed web applications experience on aver-
age four JAVASCRIPT exceptions (manifested as error messages) during execution. Further, in a
follow-up study [8], it was found that over 65% of these JAVASCRIPT faults experienced by web
applications are DOM-related faults. Formally, a fault is considered DOM-related if the correspond-
ing error propagates into the parameter value of a DOM API method, such as getElementById
and querySelector. In addition, these DOM-related faults comprise 80% of the highest impact
JAVASCRIPT faults, according to the same study. Because of their prominence and severity, this
current paper focuses on the study of DOM-related faults.

DOM-related JAVASCRIPT faults can be further divided into two classes, listed subsequently:

1. Code-terminating DOM-related JAVASCRIPT faults: A DOM access function returns a
null, undefined or incorrect value, which then propagates into several variables and
eventually causes an exception.

2. Output DOM-related JAVASCRIPT faults: A DOM update function sets the value of a DOM
element property to an incorrect value without causing the code to halt.

The fault localization approach described in this paper can localize code-terminating DOM-
related JAVASCRIPT faults automatically, requiring only the URL of the web application and the
DOM elements needed to reproduce the failure as input from the user. Hence, in the sections that
follow, it is assumed that the fault being localized is a code-terminating fault. However, note that
the proposed approach can also support output DOM-related JAVASCRIPT faults, but the approach
would only be semiautomatic, as the user must also provide the location of the failing line of code
to initiate the localization process.

For code-terminating DOM-related JAVASCRIPT faults, the direct DOM interaction is the DOM
access function that returned the null, undefined or incorrect value and is referred to as the
direct DOM access.

4. APPROACH

The proposed fault localization approach consists of two phases: (1) trace collection, and (2) trace
analysis. The trace collection phase involves crawling the web application and gathering traces of
executed JAVASCRIPT statements until the occurrence of the failure that halts the execution. After
the traces are collected, they are parsed in the trace analysis phase to find the direct DOM access.
The two phases are described in detail in this section. A block diagram of the approach is shown in
Figure 2. The usage model of the proposed approach is first described.

4.1. Usage model

Because the focus is on fault localization, it is assumed that the failure whose corresponding fault
needs to be localized has been detected before the deployment of the proposed technique. Further,
it is also assumed that the user is able to replicate the failure during the localization process, either
through a test case or by knowing the sequence of user events that would trigger the failure.

The approach is designed to automate the fault localization process. The only manual intervention
required from the user is at the very beginning, where the user would have to specify which elements
in the web application to click (during the trace collection phase) in order for the failure to occur.
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Figure 2. Block diagram illustrating the proposed fault localization approach.

Figure 3. Example trace record for Line 5 of the running example from Figure 1.

The output of the approach is the direct DOM access corresponding to the fault being localized
and specifies (1) the function containing the direct DOM access, (2) the line number of the direct
DOM access relative to this function and (3) the JAVASCRIPT file containing the direct DOM access.

4.2. Trace collection

In the trace collection phase, the web application is crawled (by systematically emulating the user
actions and page loads) to collect the trace of executed JAVASCRIPT statements that eventually lead
to the failure. This trace is generated through on-the-fly instrumentation of each line of client-side
JAVASCRIPT code before it is passed on to and loaded by the browser (box 1, Figure 2). Thus, for
every line l of JAVASCRIPT code executed, the following information is written to the trace: (1)
the function containing the line, (2) the line number relative to the function to which it belongs,
(3) the names and scopes (global or local) of all the variables within the scope of the function and
(4) the values of these variables prior to the execution of the line. In the example in Figure 1, the
order of the first execution is as follows: Line 12! Line 13! Line 2! Line 3! Line 5! Line
6! Line 7! Line 8! Line 9. Thus, each of these executed lines will have an entry in the trace
corresponding to it. The trace record for Line 5 is shown in Figure 3. Note that in this figure, the
trace record prefix contains the name of the function and the line number relative to this function;
the variable names, scopes and values are also shown, and other variables, which have not been
assigned values up to the current line, are marked with ‘none’. In the figure, bannerID’s value is
recorded as ‘none’ because this parameter is unspecified in the setTimeout call.

In addition to the trace entries corresponding to the executed lines of JAVASCRIPT code, three
special markers, called FAILURE, ASYNCCALL and ASYNC, are added to the trace. The FAILURE

marker is used in the trace analysis phase to determine at which line of JAVASCRIPT code the
exception was thrown; if a line l is marked with the FAILURE marker, then the value l:failure is set
to true. The ASYNCCALL and ASYNC markers address the asynchronous nature of JAVASCRIPT

execution as described in Section 2. In particular, these two markers are used to determine the points
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in the program where asynchronous function calls have been made, thereby simplifying the process
of mapping each execution trace to its corresponding event. If a line l is marked with the ASYNC or
ASYNCCALL marker, then the values l:async or l:asynccal l , respectively, are set to true.

The FAILURE marker is added when a failure is detected (the mechanism to detect failures is
discussed in Section 5). It contains information about the exception thrown and its characteristics.
In the example in Figure 1, the FAILURE marker is placed in the trace after the entry corresponding
to Line 9, as the null exception is thrown at this line.

The second marker, ASYNCCALL, is placed after an asynchronous call to a function (e.g. via
the setTimeout function). Each ASYNCCALL marker contains information about the caller
function and a unique identifier that distinguishes it from other asynchronous calls. Every ASYNC-
CALL marker also has a corresponding ASYNC marker, which is placed at the beginning of the
asynchronous function’s execution and contains the name of the function and the identifier of the
asynchronous call. In the example in Figure 1, an ASYNCCALL marker is placed in the trace after
the execution of Line 13, which has an asynchronous call to changeBanner. The corresponding
ASYNC marker is placed before the execution of Line 2, at the beginning of the asynchronously
called function changeBanner.

To insert the ASYNCCALL and ASYNC markers, the known asynchronous functions in
JAVASCRIPT are overridden by a trampoline function that sets up and writes the ASYNCCALL

marker to the trace. The trampoline function then calls the original function with an additional
parameter indicating the identifier of the asynchronous call. This parameter is written to the trace
within the called function along with the ASYNC marker to uniquely identify the asynchronous call.

4.3. Trace analysis

Once the trace of executed statements has been collected, the trace analysis phase begins. The
goal of this phase is to analyse the trace entries and find the direct DOM access responsible for
the JAVASCRIPT failure. First, the approach partitions the trace into sequences, where a sequence
.l1; l2; : : : ; ln/ represents the series of JAVASCRIPT statements l1; l2; : : : ; ln that were triggered by
the same event (e.g. a page load). Each sequence corresponds to exactly one event. This step cor-
responds to box 4 in Figure 2. As mentioned in the previous section, the executed JAVASCRIPT

program in the example in Figure 1 consists of two sequences: one corresponding to the load event
and the other corresponding to the time-out event.

After partitioning the trace into sequences, the algorithm looks for the sequence that contains the
direct DOM access (box 5 in Figure 2). This is called the relevant sequence. The relevant sequence
� is initially chosen to be the sequence that contains the FAILURE marker,|| that is, at the beginning
of the algorithm, � is initialized as follows:

� .l1; l2; : : : ; ln/ ” 9li 2 ¹l1; l2; : : : ; lnº; li :failure D true (1)

This marker will always be the last element of the relevant sequence, because the execution of the
sequence must have halted once the failure occurred; hence, it suffices to check if ln:failure D
true in expression (1). The direct DOM access will be found within the initial relevant sequence
provided the sequence was not triggered by an asynchronous function call but rather by the page
load or user-triggered event. However, if the relevant sequence was triggered asynchronously, that
is, it begins with an ASYNC marker, then the sequence containing the corresponding asynchronous
call (i.e. with the ASYNCCALL marker) is prepended to the relevant sequence to create the new
relevant sequence. This process is continued recursively until the top of the trace is reached or the
sequence does not begin with an ASYNC marker.

In the running example, the relevant sequence is initially set to the one corresponding to the
timeout event and consists of Lines 2, 3, 5, 6, 7, 8 and 9 (see Sequence 2 in Figure 4). Because the
relevant sequence begins with an ASYNC marker, the sequence containing the asynchronous call
(see Sequence 1 in Figure 4) is prepended to it to create the new, final relevant sequence. However,

||For output-related DOM-related JAVASCRIPT faults, the FAILURE marker is replaced by an analogous marker that
represents the failure line identified by the user.
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Figure 4. Abridged execution trace for the running example showing the two sequences and the relevant
sequence. Each trace record is appended with either a marker or the line number relative to the function.
Numbers in parentheses refer to the line numbers relative to the entire JAVASCRIPT file. root refers to code
outside a function. The line marked with a (**) is the direct DOM access, and the goal of this design is to

correctly identify this line as the direct DOM access.

there are no more sequences left in the trace, and the process terminates. Although in this example,
the relevant sequence consists of all executed statements, this will not always be the case, especially
in complex web applications where many events are triggered.

Once the relevant sequence has been found, the algorithm starts locating the direct DOM access
within that sequence (box 6 in Figure 2). To do so, it analyses the backward slice of the variable
in the line marked with the FAILURE marker, that is, the line l such that l:failure D true. If
the line l itself contains the direct DOM access, the process is halted, and the line is identified as
the direct DOM access. If not, a variable called null_var is introduced to keep track of the most
recent variable to have held the null value.

The initial value of null_var is inferred from the error message contained in the FAILURE

marker. The message is typically of the form x is null, where x is the identifier of a variable; in this
case, the initial value of null_var is set to the identifier x. The relevant sequence is traversed
backward and null_var is updated based on the statement encountered:

1. If the statement is an assignment of the form null_var = new_var, null_var is set to
the identifier of new_var.

2. If it is a return statement of the form return ret_var;, where the return value is assigned
to the current null_var in the calling function, null_var is set to the identifier of
ret_var.

3. If it is a function call of the form foo(..., arg_var ,...) where foo() is a function
with arg_var as one of the values passed, and the current null_var is the parameter to
which arg_var corresponds in the declaration of foo(), null_var is set to the identifier
of arg_var.

If the line does not fall into any of the preceding three forms, it is ignored, and the algo-
rithm moves to the previous line. Note that although syntactically valid, an assignment of the form
null_var = new_var1 op new_var2 op ..., where op is a binary operator, makes lit-
tle semantic sense as these operations are not usually performed on DOM element nodes (For
instance, it makes no sense to add two DOM element nodes together). Hence, it is assumed that such
assignments will not appear in the JAVASCRIPT code. Therefore, at every statement in the code,
null_var takes a unique value. In addition, this implies that there can only be one possible direct
DOM access along the null propagation path.
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The algorithm ends when new_var, ret_var or arg_var is a call to a DOM access function.
The line containing this DOM access is then identified as the direct DOM access.

In the example in Figure 1, the null_var is initialized to bannerToChange. The trace anal-
yser begins at Line 9, where the FAILURE marker is placed; this is also the last line in the relevant
sequence, as seen in Figure 4. Because this line does not contain any DOM access functions, the
algorithm moves to the previous line in the relevant sequence, which is Line 8. It then determines
that Line 8 does not take on any of the earlier three forms and moves to Line 7. The algorithm then
determines that Line 7 is of the first form listed earlier. It checks the new_var expression and finds
that it is a DOM access function. Therefore, the algorithm terminates and identifies Line 7 as the
direct DOM access.

4.4. Support for challenging cases

As explained in Section 2.3, programmers typically use features of the JAVASCRIPT language that
complicate the process of analysing JAVASCRIPT code. This subsection describes how the approach
was extended to handle these features.

4.4.1. Eval. As described in Section 4.2, the approach instruments each line of JAVASCRIPT code
to retrieve three pieces of information, namely the containing function, the line number and an
array of the names and values of all in-scope variables. The function that is responsible for adding
this information to the execution trace is as follows, where the parameters correspond to the
retrieved information.

send(functionName, lineNo, variableArray) (2)

The send() function is included prior to every line of JAVASCRIPT code, which is useful for
retrieving trace records for statically loaded code; however, the send() function does not collect
trace records for JAVASCRIPT code generated through eval.

A naïve approach for extending the approach to handle eval would be to simply add a call to
send() prior to every line in the string passed to the eval call. The problem with this approach
is that the eval parameter is not necessarily a string literal; hence, its value may not be known
until the eval call is made at runtime. To make the approach more general, every call to eval in
the JAVASCRIPT code is replaced with a call to a wrapper function called processEval(). This
function first evaluates the string value of the expression passed to eval. Thereafter, the function
parses this string value and adds a call to the send() function prior to each expression statement
in the parsed string; this generates a new string, which comprises of the original parameter to eval,
but with a call to send() prior to each statement. Finally, this new string is passed to eval in
order for the corresponding code to execute. The approach described is illustrated in Figure 5.

New variables. Note that it is possible for new variables to be declared in eval code. Hence,
the approach needs a way to update the array of variables that is passed to the send() function.
To do this, an array object is created at the beginning of every function in the JAVASCRIPT code.

Figure 5. Example illustrating the approach for supporting eval.
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The array is initialized with the names and scopes of all the variables declared within the function
and is updated with new variables whenever a call to processEval() is made.

Because the string value passed to eval is parsed separately from the rest of the JAVASCRIPT

code (i.e. the code outside eval), processEval() may inaccurately label the scope of a
variable defined in the eval code as ‘global’. In order to make sure the variables declared
in eval are marked with the correct scope (i.e. local or global), a scope marker is passed to
processEval() as a parameter. This scope marker contains the value root if the eval call
is made outside a function; otherwise, the scope marker is assigned the name of the function.
Thus, if the scope marker has value root, the ‘global’ markings are retained for the new vari-
ables; otherwise, the ‘global’ markings are changed to ‘local’. This ensures that variable scopes are
accurately recorded.

4.4.2. Anonymous functions. The initial approach relied on the names of the functions contain-
ing the line numbers to determine the dynamic backward slice. More specifically, during the trace
collection phase, the technique records the name of the function, which is then included in the cor-
responding trace record. During the trace analysis phase, the technique then fetches the name of the
function from the trace record so that it knows where to find the line of JAVASCRIPT code that needs
to be analysed.

Unfortunately, this approach does not work for anonymous functions, because they are not given
a name. To account for this limitation, the trace collection scheme was modified so that it assigns
a unique name for every anonymous function encountered during the crawling. In particular, each
anonymous function is assigned a name of the form anonymous-file-script-line, where file is the file
name; script is the index of the script tag containing the function (i.e. the order that the script tag
appears in the file); and line is the line number of the function relative to the script tag in which it is
defined. Note that the script tag is only applicable to JAVASCRIPT code embedded in .html files.
If the code is included in a .js file, script is simply assigned zero.

In the trace analysis phase, if a trace whose corresponding function name is of the form
anonymous-file-script-line is encountered, then the trace must correspond to a line of code located
in an anonymous function. The location of the line of code is determined by taking the file, script
and line portions of the function name, and the line of code is fetched once found.

4.4.3. Minified code. In order to handle minified code, the approach first ‘beautifies’ (i.e. unmini-
fies) this code. The trace collection and trace analysis phases will then both proceed as before, but
this time, operating on the beautified version of the code. The problem is that by operating on the
beautified version, the approach will output the line number of the direct DOM access in the beau-
tified version; because this beautified version is transparent to the developer, this line number will
not be very meaningful.

Therefore, the challenge, in this case, is in mapping every line number in the beautified version
with the column number in the minified version. In most cases, this mapping is achieved by per-
forming a string match with the minified version and identifying the starting column of the matching
string. However, this approach will not always work because of the possibility of identical lines; for
instance, if the running example were originally minified, and Figure 1 is the beautified version, then
Lines 3 and 13—which are identical—will lead to multiple matches with the minified version. To
account for this possibility, a regular expression is used to identify all the identical lines in the beau-
tified version. The identical lines in the beautified version are then sequentially assigned an index,
and a regular expression is used to find all the matches in the minified version. In this case, the
line with the nth index is mapped to the column where the nth match is located. This is illustrated
in Figure 6.

4.5. Assumptions

The described approach makes a few simplifying assumptions, listed subsequently. In the evaluation
described in Section 6, the correctness of the approach will be assessed on various open-source web
applications, thus evaluating the reasonableness of these assumptions in the real world.
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Figure 6. Example illustrating the mapping from the beautified version to the minified version, in the
approach for supporting minified code.

1. The JAVASCRIPT error is manifested in a null exception, where the null value is originated
from a call to a DOM access function.

2. There are no calls to recursive functions in the relevant sequence. More specifically, the
approach relies on the (name, file and script) tuple—where name is either the function name
or, in the case of anonymous functions, some uniquely assigned name—to distinguish func-
tions from each other. Because traces that point to a recursive function map to the same tuple,
the approach cannot distinguish between calls to the same line from different recursion levels.

3. There are no object property accesses in the null propagation path. In other words, the
approach assumes that null_varwill only be a single identifier and not a series of identifiers
connected by the dot operator (e.g. a.property and this.x)

5. TOOL IMPLEMENTATION

The approach described in Section 4 has been implemented in an automated tool called AUT-
OFLOX** using the Java programming language. In addition, a number of existing tools are used
to assist in the trace collection phase, including RHINO [14] for parsing and instrumenting the
JAVASCRIPT code and jsbeautifier [15] for beautifying minified code.

AUTOFLOX has been implemented in two different interfaces.

CRAWLJAX interface. In the first interface, AUTOFLOX prompts the user for the URL of the web
application containing the fault and crawls this application to perform trace collection. Here, the
CRAWLJAX [16] tool is used to systematically crawl the web application and trigger the execution
of JAVASCRIPT code corresponding to user events. Other tools such as WaRR [17], Mugshot [18]
and Selenium [19] can aid in the reproduction phase. However, those tools require manually or
programmatically interacting with the web application at hand. Thus, CRAWLJAX was used because
of the level of automation and flexibility it provides. Prior to crawling the web application, the
AUTOFLOX user can specify which elements in the web application the crawler should examine
during the crawling process (otherwise the default settings are used). These elements should be
chosen so that the JAVASCRIPT error is highly likely to be reproduced.†† In this mode, only one
fault can be localized at a time.

Eclipse interface. In the second interface, AUTOFLOX runs as an Eclipse IDE [20] plugin. Here,
the programmer can develop her web application project on Eclipse; with the project files open, she
can subsequently click the ‘Run AUTOFLOX’ button to run the tool. Doing so will open the Firefox
web browser, which allows the user to replicate the fault by either interacting with the application or
running a test case (e.g. a Selenium test case). Where applicable, AUTOFLOX will then output the
direct DOM access each time a null exception is thrown. Note that in this interface, AUTOFLOX is
able to localize multiple faults by assigning a unique ID to each exception encountered.

**http://ece.ubc.ca/~frolino/projects/autoflox/.
††While nondeterministic errors can be localized with AUTOFLOX, they may require multiple runs to reproduce the error

(i.e. until the error appears).
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The JAVASCRIPT code instrumentation and tracing technique used in the proposed approach are
based on an extension of the INVARSCOPE [21] plugin to CRAWLJAX. The following modifications
were made to INVARSCOPE in order to facilitate the trace collection process:

1. While the original INVARSCOPE tool only collects traces at the function entry and exit points,
the modified version collects traces at every line of JAVASCRIPT code to ensure that the
complete execution history can be analysed in the trace analysis phase.

2. The original INVARSCOPE does not place information on the scope of each variable in the
trace; thus, it has been modified to retrieve this information and include it in the trace.

3. The modifications allow asynchronous function calls to be overridden and to place extra instru-
mentation at the beginning of each function to keep track of asynchronous calls (i.e. to write
the ASYNCCALL and ASYNC markers in the trace).

4. Finally, Try-Catch handlers are placed around each function call in the JAVASCRIPT code in
order to catch exceptions and write FAILURE markers to the trace in the event of an exception.

Note that the tool allows the user to exclude specific JAVASCRIPT files from being instrumented.
This can speed up the trace collection process, especially if the user is certain that the code in those
files does not contain the direct DOM access.

Finally, the trace analysis phase has also been added as a part of the AUTOFLOX tool
implementation and requires no other external tools.

6. EMPIRICAL EVALUATION

6.1. Goals and research questions

An empirical study has been conducted to evaluate the accuracy and real-world relevance of the
proposed fault localization approach.

The research questions that are answered in the evaluation are as follows:

RQ1: What is the fault localization accuracy of AUTOFLOX? Are the implementation assump-
tions reasonable?

RQ2: Is AUTOFLOX capable of localizing bugs from real-world web applications?
RQ3: What is the performance overhead of AUTOFLOX on real-world web applications?

6.2. Methodology

The subsequent subsections address each of the preceding questions. An overview of the evaluation
methodology used to answer each research question is shown subsequently.

To answer RQ1, AUTOFLOX is run on six open-source web applications and three production
websites. DOM-related JAVASCRIPT faults are injected into the applications and AUTOFLOX is run
to localize the direct DOM accesses corresponding to the faults.

To address RQ2, AUTOFLOX is subjected to 20 bugs (which satisfy the fault model) that have
previously been observed and reported for seven open-source web applications. Most of these bugs
are from the authors’ previous study [8].

The performance (RQ3) is measured by calculating the overhead incurred by the instrumentation
and the time it takes for the tool to find the direct DOM access.

Note that the experiments were performed on an Ubuntu 12.04 platform using the Firefox v.
33.0.2 web browser. The machine used was a 2.66 GHz Intel Core 2 Duo, with 4 GB of RAM.

6.3. Accuracy of AUTOFLOX

To answer RQ1, a fault injection experiment was performed on six open-source web applications,
shown in Table I. As seen in this table, the applications consist of thousands of lines of JAVASCRIPT

code each. Fault-injection was used to establish the ground truth for measurement of the accuracy
of AUTOFLOX. However, the fault injection process was not automated. Rather, a search was first
made for calls to DOM access functions—either from the DOM API or from popular JavaScript
libraries—that return null, such as getElementById(), getAttribute() and $(). The
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Table I. Results of the experiment on open-source web applications, assessing the accuracy of AUTOFLOX.

JAVASCRIPT web Lines of # of # of direct DOM eval Anonymous Percentage
applications JS code mutations accesses identified support increase support increase identified

TASKFREAK 3,044 39 39 (38) C1 — 100% (97.4%)
TUDU 11,653 9 9 (0) — C9 100% (0%)
WORDPRESS 8,366 17 14 (9) — C5 82.4% (52.9%)
CHATJAVASCRIPT 1,372 10 10 (10) — — 100% (100%)
JSSCRAMBLE 131 6 6 (6) — — 100% (100%)
JS TODO 241 2 2 (1) — C1 100% (50%)

Overall 83 80 (64) +1 +15 96.4% (77.1%)

DOM, Document Object Model; JS, JavaScript.

faults were then manually injected by mutating the parameter of the DOM access function; this
parameter mutation will ensure that the call to the function will return a null value, thereby lead-
ing to a null exception in a later usage. In order to demonstrate the effect of adding support for
anonymous functions, eval and minified code, the fault injection experiment was run twice—once
with these new modules enabled and once with the modules disabled.

Only one mutation is performed in each run of the application to ensure controllability. For each
injection, the direct DOM access is the mutated line of JAVASCRIPT code. Thus, the goal is for AUT-
OFLOX to successfully identify this mutated line as the direct DOM access, based on the message
printed due to the exception.

Furthermore, localization was performed on injected faults rather than actual faults because no
known code-terminating DOM-related faults existed in these web applications at the time of the
experiment. However, AUTOFLOX is also used to localize real faults that appear in seven other web
applications, which is described in further detail in Section 6.4.

Table I shows the results of the experiments; the results for the case where the new modules are
disabled are shown in parentheses. As shown in the table, with the new modules enabled, AUT-
OFLOX was able to identify the direct DOM access for all mutations performed in five of the six
applications, garnering 100% accuracy in these applications; when all six applications are consid-
ered, the overall accuracy was 96.4%. In contrast, when the new modules are disabled, only two
of the applications (CHATJAVASCRIPT and JSSCRAMBLE) had perfect accuracies, and the overall
accuracy was significantly lower, at 77.1%.

Taking a closer look at the unsuccessful cases when the new modules are disabled, it was found
that AUTOFLOX was not able to accurately pinpoint the direct DOM access because in these cases,
the dynamic backward slice included lines from anonymous function code and eval code. In par-
ticular, 15 of the unsuccessful cases resulted from the presence of anonymous function code, while
four of the unsuccessful cases resulted from the presence of eval code. This result demonstrates
that these features are commonly used in JAVASCRIPT code, and it is therefore important to add
support for them, as has been done.

For the case where the new modules are enabled, the only application for which AUTOFLOX had
imperfect accuracy was WORDPRESS, where it failed to detect three direct DOM access lines; in
all three cases, AUTOFLOX generated an error message stating that the direct DOM access could
not be found. Further analysis of the JAVASCRIPT code in WORDPRESS revealed that in these three
unsuccessful cases, the dynamic backward slice included calls to the setTimeout() method,
where the first parameter passed to the method is a function literal; this is currently not supported by
AUTOFLOX.‡‡ Note, however, that this is an implementation issue which does not fundamentally
limit the design; one possible way to overcome this problem is by integrating the parameter of
setTimeout() as part of the eval-handling module.

Overall, this experiment demonstrates that AUTOFLOX has an accuracy of 96.4% across the six
open-source web applications. Note that AUTOFLOX had no false positives, that is, there were no

‡‡Note that in the running example, the setTimeout() call is passed a function identifier, which is different from a
function literal.
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Table II. Results of the experiment on production websites, assessing the robustness of AUT-
OFLOX (in particular, how well it works in production settings).

Production Total number Number of direct Anonymous Minified
website of faults DOM accesses identified support increase support increase

ubuntu.com 1 1 (0) C1 —
Hacker News 2 2 (2) — —
W3C School 1 1 (0) — C1

Overall 4 4 (2) C1 C1

DOM, Document Object Model.

cases where the tool incorrectly localized a fault or said that a fault had been localized when it
had not.

Production website: AUTOFLOX was also used to localize faults on three production websites,
listed in Table II. For these websites, the faults are injected in the homepage, in a way similar to
what was done in the fault injection experiment described earlier.§§ As before, the experiment was
run twice, enabling the new modules in one case and disabling them in the other.

As Table II shows, AUTOFLOX was able to identify all four of the direct DOM accesses, with
the new modules enabled. In contrast, with the new modules disabled (whose results are shown
in parentheses in Table II), the tool only identified two of the four direct DOM accesses. One of
the unsuccessful cases (ubuntu.com) resulted from the presence of an anonymous function, while
the other unsuccessful case (W3C School) resulted from the presence of minified code (which is a
common practice in many production websites).

The overall implication of this study is that the assumptions made by AUTOFLOX are reasonable
as they were followed both in the open-source applications and in the production websites. Further,
the new features added to AUTOFLOX significantly boosted its accuracy. Later in Section 7, the
broader implications of the assumptions made by AUTOFLOX are discussed.

6.4. Real bugs

In order to assess how well AUTOFLOX works on actual bugs that have appeared in real-world
web applications, the authors collected 19 bug reports from the applications in a prior study [8]
and subjected AUTOFLOX to them to see if it can successfully identify the direct DOM access. In
addition, the authors found a real bug in the production website ‘tumblr’, which was also included
in the experiment; this is the running example described earlier. These 20 bugs come from seven
open-source web applications and libraries, shown in Table III and have all been fixed by their
respective developers. Here, ground truth is established by comparing the direct DOM access output
by AUTOFLOX with the actual direct DOM access, which is identified by the developers in the
corresponding bug report (or, in the case of tumblr, by analysing the code to determine the fix).

In the end, AUTOFLOX was able to successfully identify the direct DOM access for all 20 of the
bugs. Table III also shows the distance of the backward slice from the direct DOM access to the line
where the null exception takes place (second–last column), and the number of functions spanned
by the backward slice (last column). Note that finding the direct DOM access is nontrivial for some
of these bugs. For example, one of the bugs in Moodle (MD2) had a dynamic backward slice that
spanned multiple lines within the same function, and in fact, the variable to which the DOM element
is being assigned is constantly being reused in that function to refer to other elements. In addition,
the dynamic backward slice for a bug in WordPress (WP1) spanned over 40 lines, spread out across
multiple functions; manually tracing through these lines and functions can evidently be a time-
consuming process. This demonstrates the usefulness of AUTOFLOX, as well as its robustness, as it
is capable of localizing real bugs in real web applications.

§§Because the authors did not have write access to the JAVASCRIPT source code for these websites, the mutation was
performed by manually modifying the code intercepted by the proxy.
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Table III. Web applications and libraries in which the real bugs to which AUTOFLOX is subjected appear.

Identified by Backward slice Number of functions
Application/Library Number of bugs Bug identifier AUTOFLOX? Length (LOC) in backward slice

Joomla 3 JM1 X 2 1
JM2 X 2 1
JM3 X 8 2

Moodle 6 MD1 X 2 1
MD2 X 5 1
MD3 X 7 2
MD4 X 8 2
MD5 X 2 1
MD6 X 1 1

MooTools 2 MT1 X 1 1
MT2 X 1 1

Prototype 1 PT1 X 1 1

Tumblr 1 TB1 X 1 1

WikiMedia 4 WM1 X 2 1
WM2 X 1 1
WM3 X 2 1
WM4 X 1 1

WordPress 3 WP1 X 44 4
WP2 X 5 1
WP3 X 10 2

LOC, lines of code.

Table IV. Performance results.

Production website Trace collection overhead (%) Total time (s)

ubuntu.com 63.3 50.3
Hacker News 30.9 28.8
W3C School 119.3 56.8
Tumblr 35.0 33.3

6.5. Performance

The performance overhead of AUTOFLOX is reported in this section. The measurements are per-
formed on the production websites because production code is more complex than development
code (such as the ones in the open-source web applications tested earlier) and, hence, incurs higher
performance overheads. The following metrics are measured: (1) performance overhead due to
instrumentation in the trace collection phase, and (2) time taken by the trace analyser to find the
direct DOM access. To measure (1), the production websites are crawled using CRAWLJAX both
with instrumentation and without instrumentation; the baseline is the case where the web applica-
tion is run only with CRAWLJAX. For measuring (2), AUTOFLOX was run on the collected trace.
Note that the Eclipse interface experiences similar overheads.

Table IV shows the performance measurements. As the table shows, the overhead incurred by
the trace collection phase (average of three runs) ranges from 30.9% in Hacker News to 119.3%
in W3C School. Also, on average, the trace analysis phase ran for 0.1 s in all four websites. Note
that AUTOFLOX’s trace collection module is only intended to be turned on when a fault needs
to be localized—when interacting with a website as normal, the module will be off; hence, the
high overheads in some websites (e.g. W3C School) are not expected to be problematic. Indeed,
AUTOFLOX does not run for more than a minute in any of the websites, from trace collection to
fault localization.
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7. DISCUSSION

Some issues relating to the limitations of AUTOFLOX and some threats to the validity of the
evaluation are now discussed.

7.1. Limitations

Currently, AUTOFLOX requires the user to specify the elements that will be clicked during the web
application run to replicate the failure. This process can be tedious for the programmer if she is not
aware of all the DOM elements (and their corresponding IDs) present in the web application and will
often require the programmer to search for these elements in the source code of the web application.
The Eclipse plugin version of AUTOFLOX mitigates this problem to a certain extent, by asking the
user to replicate the failure by manually interacting with the web application; however, doing this for
a large set of bugs may be tedious, and ways to automate this process without sacrificing accuracy
are currently being explored.

One way to simplify the preceding task and effectively automate the process of identifying all
the DOM IDs is to do a preliminary run of the web application that detects all the DOM elements
—where all elements are considered clickable—and present this list of DOM elements to the user.
However, this approach would have the disadvantage of having to run the web application multiple
times, which would slow down the fault localization process. In addition, this approach may not be
able to detect DOM elements created dynamically by the JAVASCRIPT code if only a subset of the
web application is crawled.

As seen from the accuracy results in the evaluation, although AUTOFLOX is capable of handling
calls to eval (or eval-like functions such as setTimeout) where a string (or a concatenation
of strings) is passed as the parameter, it currently does not support the case where a function literal
is passed as a parameter to this function. Based on the applications that were evaluated, passing
function literals to eval-like functions does not seem to be a common practice among developers.
Most parameters to setTimeout, for instance, are in the form of function identifiers, similar to
the running example.

7.2. Threats to validity

An external threat to the validity of the evaluation is that only a limited number of web applications
are considered to assess the correctness of AUTOFLOX. However, these applications have been
chosen as they contain many lines of JAVASCRIPT code, thereby allowing multiple fault injections
to be performed per application.

In terms of internal validity, a fault injection approach was used to emulate the DOM-related faults
in the evaluation. The threat here is that the faults injected may not be completely representative of
the types of faults that happen in the real world. Nonetheless, the bug report study from the authors’
prior work [8] provides supportive evidence that the bugs that were injected are prominent and must
therefore be considered. Further, AUTOFLOX was also tested on real bugs in one of the experiments,
demonstrating its applicability in more realistic settings.

Finally, while AUTOFLOX is openly available, and the fault injection experiment on the six open-
source web applications is replicable, the experiment on production websites is not guaranteed to be
replicable, as the source code of these websites may change over time, and the authors do not have
access to prior versions of the website.

8. RELATED WORK

Here, related work is classified into two broad categories: web application reliability and
fault localization.
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8.1. Web application reliability

Web applications have been an active area of research for the past decade. This paper focuses
on reliability techniques that pertain to JAVASCRIPT-based web applications, which are a more
recent phenomenon.

Static analysis. There have been numerous studies to find errors and vulnerabilities in web appli-
cations through static analysis [22–25]. Because JAVASCRIPT is a difficult language to analyse
statically, these techniques typically restrict themselves to a safe subset of the language. In partic-
ular, they do not model the DOM, or they oversimplify the DOM, which can lead to both false
positives and false negatives. Jensen et al. [26] model the DOM as a set of abstract JAVASCRIPT

objects. However, they acknowledge that there are substantial gaps in their static analysis, which
can result in false-positives. In contrast, the proposed technique is based on dynamic execution and,
as a result, does not suffer from false-positives.

Testing and replay. Automated testing of JAVASCRIPT-based web applications is an active area
of research [2–4, 27]. ATUSA [2] is an automated technique for enumerating the state space of a
JAVASCRIPT-based web application and finding errors or invariant violations specified by the pro-
grammer. JSart [28] and DODOM [3] dynamically derive invariants for the JAVASCRIPT code and
the DOM, respectively. Finally, MUTANDIS [29] determines the adequacy of JAVASCRIPT test cases
using mutation testing. However, none of these techniques focus on fault localization. Alimadadi
et al. recently introduced a program comprehension tool called CLEMATIS [30], which maps user
events to JAVASCRIPT code; although this tool can help the developer narrow down the list of
JAVASCRIPT lines to consider, it does not pinpoint a precise fault location, as AUTOFLOX does.

WaRR [17], Mugshot [18] and Jalangi [31]—among others [32, 33]—replay a web application’s
execution after a failure in order to reproduce the events that led to the failure. However, they do
not provide any support for localizing the fault and leave it to the programmer to do so. As shown
in Section 2, this is often a challenging task.

Finally, tools such as Firefox’s Firebug [34] plug-in exist to help JAVASCRIPT programmers
debug their code. However, such tools are useful only for the bug identification phase of the
debugging process and not the fault localization phase.

8.2. Fault localization

Fault localization techniques isolate the root cause of a fault based on the dynamic execution of the
application. They can be classified into spectrum-based and slicing-based.

Spectrum-based fault localization techniques [35–37] include Pinpoint [38], Tarantula [6],
Whither [39] and MLNDebugger [36]. Additionally, MUSE [40] and FIFL [41] also perform
spectrum-based fault localization based on injected mutants in traditional programs, focusing pri-
marily on regression bugs. These techniques execute the application with multiple inputs and gather
the dynamic execution profile of the application for each input. They assume that the executions are
classified as success or failure and look for differences in the profile between successful and failing
runs. Based on the differences, they isolate the parts of the application, which are likely responsi-
ble for the failure. However, spectrum-based techniques are difficult to adapt to web applications,
as web applications are rarely deterministic, and hence they may incur false positives. Also, it is not
straightforward to classify a web application’s execution as success or failure, as the results depend
on its usage [42].

Slicing-based fault localization techniques have been proposed by Agrarwal et al. [10] and
Gupta et al. [43]. These techniques isolate the fault based on the dynamic backward slice of the
faulty statement in the code. AUTOFLOX is similar to this body of work in that it also extracts the
dynamic backward slice of the JAVASCRIPT statement that throws an exception. However, it differs
in two ways. First, it focuses on errors in the DOM–JAVASCRIPT interaction. The DOM is unique
to web applications, and hence, the other fault-localization techniques do not consider it. Second,
JAVASCRIPT code is often executed asynchronously in response to events such as mouse clicks and
time-outs and does not follow a deterministic control-flow (see Section 2.2 for more details).

Copyright © 2015 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2015)
DOI: 10.1002/stvr



F. S. OCARIZA ET AL.

Web fault localization. As a complementary tool to AUTOFLOX, the authors developed VEJO-
VIS [44], which is a JAVASCRIPT fault repair suggestion tool. This tool is similar to AUTOFLOX in
that it also targets DOM-related faults and uses a backward slicing approach. However, unlike AUT-
OFLOX, which starts with the line of code that leads to the failure and tries to find the direct DOM
access by examining the dynamic backward slice, VEJOVIS starts with the direct DOM access and
examines its parameters to see how it can be fixed to match the DOM.

To the best of the authors’ knowledge, the only papers apart from the current work that has
explored fault localization in the context of web applications are those by Artzi et al. [45] and
Samimi et al. [46]. Like AUTOFLOX, the goal of the tools proposed in these papers is to automat-
ically localize web application faults, achieving high accuracies. However, their work differs from
the current one in various aspects: (1) they focus on the server-side code, that is, PHP, while the
current work focuses on the client-side; and (2) they localize HTML validation errors, while the
current work’s proposed approach localizes JAVASCRIPT faults. In addition, Artzi et al. have opted
for a spectrum-based approach based on Tarantula, while AUTOFLOX is a dynamic slicing-based
approach. To the best of the authors’ knowledge, automated fault localization for JAVASCRIPT-based
web applications has not been addressed in the literature.

9. CONCLUSIONS AND FUTURE WORK

This paper introduces a fault-localization approach for JAVASCRIPT-based web applications. The
approach is based on dynamic slicing and addresses the two main problems that inhibit JAVASCRIPT

fault localization, namely asynchronous execution and DOM interactions. Here, the focus is on
DOM-related JAVASCRIPT faults, which is the most prominent class of JAVASCRIPT faults. The
proposed approach has been implemented as an automated tool, called AUTOFLOX, which is evalu-
ated using six open-source web applications and four production websites. The results indicate that
AUTOFLOX can successfully localize over 96% of the faults, with no false-positives.

There are several ways in which the work outlined in this paper will be extended. First, the current
work focuses on code-terminating JAVASCRIPT faults, that is, faults that lead to an exception thrown
by the web application. However, not all DOM-related faults belong to this category. The design will
therefore be extended to include a more automated technique for localizing non-code-terminating
JAVASCRIPT faults. In addition, the empirical evaluation will be extended to perform user studies
of the AUTOFLOX tool, in order to measure its ease of use and efficacy in localizing faults. This is
also an avenue for future work.
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Research Article

Automatic fault localization for client-side JavaScript

Frolin S. Ocariza, Jr., Guanpeng Li, Karthik Pattabiraman and Ali Mesbah

This work proposes an approach for automatically localizing Document-Object-Model-related (i.e.
DOM-related) JavaScript faults in AJAX-based web applications. The technique has been imple-
mented in a tool called AutoFLox, and it is capable of localizing faults in a wide array of web
applications, including minified applications, as well as those using anonymous functions and eval.
An evaluation of the proposed approach shows that it is accurate, with a recall of 96% and no false
positives, and can localize real bugs from real-world web applications. Copyright © 2015 John
Wiley & Sons, Ltd.
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